

Observations of the Extraordinarily Bright, Long, Nearby GRB 130427A

Judy Racusin (NASA/GSFC)

On behalf of the Fermi-LAT and Fermi-GBM Collaborations

(especially Sylvia Zhu, Giacomo Vianello, Chuck Dermer, Jim Chiang, Nicola Omodei, Shaolin Xiong, Dan Kocevski)

Tales Colescope Feeting

- Bright! Highest GRB fluence ever recorded
- LAT (>100 MeV)
 emission was extremely
 bright and long-lasting
- Relatively low redshift, but not subluminous
- Bright prompt optical flash and afterglow
- Long lived broadband radio – X-ray afterglow
- Most Luminous SN-GRB buffer filled-up + association – SN2013cq Photon pile-up

Prompt γ-ray
emission
detected by:
Fermi
Swift
Konus-Wind
IPN
RHESSI
AGILE
INTEGRAL
MAXI

Fine timescale (TTE)
buffer filled-up +
Photon pile-up

More on GBM Observations in Talk by Michael Burgess

- **Bright! Highest GRB** fluence ever recorded
- **LAT (>100 MeV)** emission was extremely bright and long-lasting
- Relatively low redshift, but not subluminous
- **Bright prompt optical** flash and afterglow
- Long lived broadband radio – X-ray afterglow
- **Most Luminous SN-GRB** association – SN2013cq

Only GBM fluence shown, but has also been compared to BATSE and other archives

3RB130427A

Eethi

- Bright! Highest GRB fluence ever recorded
- LAT (>100 MeV)
 emission was extremely
 bright and long-lasting
- Relatively low redshift, but not subluminous
- Bright prompt optical flash and afterglow
- Long lived broadband radio – X-ray afterglow
- Most Luminous SN-GRB association SN2013cq

Autonomous repoint led to burst centered exposure

6 hours before burst

6 hours including burst

- Bright! Highest GRB fluence ever recorded
- LAT (>100 MeV)
 emission was extremely
 bright and long-lasting
- Relatively low redshift, but not subluminous
- Bright prompt optical flash and afterglow
- Long lived broadband radio – X-ray afterglow
- Most Luminous SN-GRB association SN2013cq

- Bright! Highest GRB fluence ever recorded
- LAT (>100 MeV)
 emission was extremely
 bright and long-lasting
- Relatively low redshift, but not subluminous
- Bright prompt optical flash and afterglow
- Long lived broadband radio – X-ray afterglow
- Most Luminous SN-GRB association SN2013cq

Ackermann et al. 2013, Science

- Bright! Highest GRB fluence ever recorded
- LAT (>100 MeV)
 emission was extremely
 bright and long-lasting
- Relatively low redshift, but not subluminous
- Bright prompt optical flash and afterglow
- Long lived broadband radio – X-ray afterglow
- Most Luminous SN-GRB association SN2013cq

- Bright! Highest GRB fluence ever recorded
- LAT (>100 MeV)
 emission was extremely
 bright and long-lasting
- Relatively low redshift, but not subluminous
- Bright prompt optical flash and afterglow
- Long lived broadband radio – X-ray afterglow
- Most Luminous SN-GRB association SN2013cq

- Bright! Highest GRB fluence ever recorded
- LAT (>100 MeV)
 emission was extremely
 bright and long-lasting
- Relatively low redshift, but not subluminous
- Bright prompt optical flash and afterglow
- Long lived broadband radio – X-ray afterglow
- Most Luminous SN-GRB association SN2013cq

- Bright! Highest GRB fluence ever recorded
- LAT (>100 MeV)
 emission was extremely
 bright and long-lasting
- Relatively low redshift, but not subluminous
- Bright prompt optical flash and afterglow
- Long lived broadband radio – X-ray afterglow
- Most Luminous SN-GRB association SN2013cq

Not under-luminous like most nearby GRBs

- Bright! Highest GRB fluence ever recorded
- LAT (>100 MeV)
 emission was extremely
 bright and long-lasting
- Relatively low redshift, but not subluminous
- Bright prompt optical flash and afterglow
- Long lived broadband radio – X-ray afterglow
- Most Luminous SN-GRB association SN2013cq

Vestrand et al. 2013, Science

7th magnitude optical flash (2nd brightest ever recorded)

- Bright! Highest GRB fluence ever recorded
- LAT (>100 MeV)
 emission was extremely
 bright and long-lasting
- Relatively low redshift, but not subluminous
- Bright prompt optical flash and afterglow
- Long lived broadband radio – X-ray afterglow
- Most Luminous SN-GRB association SN2013cq

Perley et al. 2014

- Bright! Highest GRB fluence ever recorded
- LAT (>100 MeV)
 emission was extremely
 bright and long-lasting
- Relatively low redshift, but not subluminous
- Bright prompt optical flash and afterglow
- Long lived broadband radio – X-ray afterglow
- Most Luminous SN-GRB association SN2013cq

Maselli et al. 2013, Science

Follow-up observations by many ground- and space-based observatories including Swift-UVOT, RAPTOR, Liverpool Telescope, P60, RATIR, Gemini-N, Faulkes-N, MITSuME, HST, Chandra, NuSTAR, VLA, CARMA...

- Bright! Highest GRB fluence ever recorded
- LAT (>100 MeV)
 emission was extremely
 bright and long-lasting
- Relatively low redshift, but not subluminous
- Bright prompt optical flash and afterglow
- Long lived broadband radio – X-ray afterglow
- Most Luminous SN-GRB association SN2013cq

Perley et al. 2014

Similarity between SNe associated with most and least luminous GRBs suggests similar progenitor star

Levan et al. 2014

The Nearby Ordinary Monster

- Nearby
 - But not subluminous
 - Similar to cosmological cousins
- Once in a decade (or more) sort of event

Vestrand et al. 2013, Science

Temporal Evolution

- Similar afterglow powerlaw decay slopes from Optical-X-ray-GeV
- Same component?
 - Synchrotron forward shock (Perley et al. 2014, Kouveliotou et al 2014, Ackermann et al. 2013)
 - Additional inverse
 Compton component
 (Fan et al. 2013, Liu et al. 2013)

Kouveliotou et al. 2013

Spectral Evolution

Broadband Modeling

- Wind-like environment, or somewhere between constant density ISM and Wind
- Appears to be a single component

Perley et al. 2014

- First late-time hard X-ray (3-80 keV) afterglow ever observed
- Single smoothly broken power law from optical - GeV

Kouveliotou et al. 2013

GRB 130427A Challenges Synchrotron Shock Physics?

- Requires modifications to standard Synchrotron shock physics or alternative model (Non-uniform magnetic field, Diffusive shock acceleration, magnetic reconnection, Electromagnetic cascades)
- See poster #9.08 by Jeremy Perkins on limits set by VERITAS TeV observations of GRB 130427A

Conclusions

- GRB 130427A was a rare and wellobserved event that is teaching us about GRB emission mechanisms and shock physics
- Pass 8 adds ~30% more photons (source class), including several new high energy photons with E > 10 GeV
- Future TeV observations could help solve solve Synchrotron puzzle
 - HAWC has limits on GRB 130427A
 (Abeysekara et al., arXiv:
 1410:1536), but will be more
 constraining with the full array
- Current array of observatories (ground and space-based) are ideal for studying these rare and bright objects

